Commit bd88a8b7 authored by Paul Primus's avatar Paul Primus
Browse files

add submission packages

parent 666564d1
This diff is collapsed.
%% Cell type:code id: tags:
``` python
from pymongo import MongoClient
from matplotlib import pyplot as plt
import numpy as np
from dcase2020_task2.data_sets.mcm_dataset import INVERSE_CLASS_MAP, TRAINING_ID_MAP, CLASS_MAP
from scipy.stats import rankdata
baseline_auc = {
'name': 'baseline',
0: {0: 0.5441, 2: 0.7340, 4: 0.6161, 6: 0.7392},
1: {0: 0.6715, 2: 0.6153, 4: 0.8833, 6: 0.7455},
2: {0: 0.9619, 2: 0.7897, 4: 0.9430, 6: 0.6959},
3: {1: 0.8136, 2: 0.8597, 3: 0.6330, 4: 0.8445},
4: {1: 0.7807, 2: 0.6416, 3: 0.7535},
5: {0: 0.6876, 2: 0.6818, 4: 0.7430, 6: 0.5390}
}
baseline_pauc = {
'name': 'baseline',
0: {0: 0.4937, 2: 0.5481, 4: 0.5326, 6: 0.5235},
1: {0: 0.5674, 2: 0.5810, 4: 0.6710, 6: 0.5802},
2: {0: 0.8144, 2: 0.6368, 4: 0.7198, 6: 0.4902},
3: {1: 0.6840, 2: 0.7772, 3: 0.5521, 4: 0.6897},
4: {1: 0.6425, 2: 0.5601, 3: 0.6103},
5: {0: 0.5170, 2: 0.5183, 4: 0.5197, 6: 0.4843}
}
baseline_both = {}
for t in baseline_auc:
if t == 'name':
baseline_both[t] = 'baseline'
continue
else:
baseline_both[t] = {}
for i in baseline_auc[t]:
baseline_both[t][i] = np.array([baseline_auc[t][i], baseline_pauc[t][i]])
def get_experiment(runs, name):
experiment_dict = dict()
for i in range(6):
experiment_dict[i] = dict()
experiment_dict['name'] = name
for experiment in runs:
if experiment['config'].get('id') == name:
machine_dict = experiment_dict.get(experiment['config']['machine_type'])
result = experiment.get('result')
machine_type = INVERSE_CLASS_MAP[experiment['config']['machine_type']]
machine_id = experiment['config']['machine_id']
if result:
machine_dict[experiment['config']['machine_id']] = result.get(
machine_type, {}
).get(
f'json://{machine_id}', -1
).get('py/tuple', [0, 0])[:2]
else:
machine_dict[experiment['config']['machine_id']] = np.array([0, 0])
return experiment_dict
def get_record(experiment):
record = []
for i in range(6):
for j in TRAINING_ID_MAP[i]:
v = experiment.get(i)
if v:
v = v.get(j, [0, 0])
else:
v = np.array([0, 0])
record.append(np.array(v))
assert len(record) == 23
return experiment['name'], record
```
%% Cell type:code id: tags:
``` python
client = MongoClient('mongodb://student2.cp.jku.at:27017/')
experiments = [r for r in client.resnet_gridsearch.runs.find({"experiment.name": "dcase2020_task2_ClassificationExperiment"})]
print(f'Loaded {len(experiments)} runs.')
```
%%%% Output: stream
Loaded 405 runs.
%% Cell type:code id: tags:
``` python
descriptors = set()
for experiment in experiments:
descriptors = descriptors.union(set([experiment['config']['id']]))
descriptors = list(descriptors)
print(f'Loaded {len(descriptors)} distinct experiments.')
```
%%%% Output: stream
Loaded 10 distinct experiments.
%% Cell type:code id: tags:
``` python
# Extract Results
# Concatenate Baseline Results
n, m = get_record(baseline_both)
names = [n]
metrics = [np.array(m)]
for descriptor in descriptors:
n, m = get_record(
get_experiment(
experiments,
descriptor
)
)
names.append(n)
metrics.append(np.array(m))
```
%% Cell type:code id: tags:
``` python
data = np.array(metrics)
auc_ranks = []
pauc_ranks = []
idxes = [0, 4, 8, 12, 16, 19, 23]
best_idxes = []
for type_, (i, j) in enumerate(zip(idxes[:-1], idxes[1:])):
average_auc = data[:, i:j, 0].mean(axis=1)
average_pauc = data[:, i:j, 1].mean(axis=1)
best_idx = np.argmax(average_auc + average_pauc)
best_idxes.append(
(best_idx, names[best_idx])
)
print(f'Best Model for Machine Type {type_}: {best_idxes[-1]}')
auc_ranks.append(rankdata(-average_auc))
pauc_ranks.append(rankdata(-average_pauc))
ranks = np.stack([np.array(list(zip(*auc_ranks))), np.array(list(zip(*pauc_ranks)))], axis=-1).mean(axis=-1).mean(axis=-1)
sorted_model_indices = list(np.argsort(ranks))
names = np.array(names)
for i, (n, r, j) in enumerate(zip(names[sorted_model_indices], ranks[sorted_model_indices], sorted_model_indices)):
print(f'{i}-{r}: ID-{j} {n}')
```
%%%% Output: stream
Best Model for Machine Type 0: (9, 'resnet_gridsearch_normal_loose_1e-4_100_BCE')
Best Model for Machine Type 1: (6, 'resnet_gridsearch_a_bit_larger_loose_1e-4_100_BCE')
Best Model for Machine Type 2: (6, 'resnet_gridsearch_a_bit_larger_loose_1e-4_100_BCE')
Best Model for Machine Type 3: (5, 'resnet_gridsearch_a_bit_smaller_loose_1e-4_100_BCE')
Best Model for Machine Type 4: (8, 'resnet_gridsearch_normal_loose_1e-5_100_AUC')
Best Model for Machine Type 5: (1, 'resnet_gridsearch_a_bit_smaller_loose_1e-4_100_AUC')
0-3.75: ID-6 resnet_gridsearch_a_bit_larger_loose_1e-4_100_BCE
1-4.416666666666667: ID-3 resnet_gridsearch_a_bit_larger_loose_1e-4_100_AUC
2-4.833333333333333: ID-4 resnet_gridsearch_a_bit_larger_loose_1e-5_100_BCE
3-5.083333333333333: ID-5 resnet_gridsearch_a_bit_smaller_loose_1e-4_100_BCE
4-5.166666666666667: ID-10 resnet_gridsearch_a_bit_larger_loose_1e-5_100_AUC
5-5.583333333333333: ID-9 resnet_gridsearch_normal_loose_1e-4_100_BCE
6-5.916666666666667: ID-2 resnet_gridsearch_normal_loose_1e-5_100_BCE
7-6.083333333333333: ID-7 resnet_gridsearch_normal_loose_1e-4_100_AUC
8-6.916666666666667: ID-1 resnet_gridsearch_a_bit_smaller_loose_1e-4_100_AUC
9-7.416666666666667: ID-8 resnet_gridsearch_normal_loose_1e-5_100_AUC
10-10.833333333333334: ID-0 baseline
%% Cell type:code id: tags:
``` python
# Create Submission 1
```
%% Cell type:code id: tags:
``` python
from dcase2020_task2.data_sets import INVERSE_CLASS_MAP, EVALUATION_ID_MAP
import os
from shutil import copyfile
best_model_folder = names[sorted_model_indices[0]]
for machine_type in range(6):
for model_id in EVALUATION_ID_MAP[machine_type]:
machine_type_str = INVERSE_CLASS_MAP[machine_type]
src_path = os.path.join('..', 'experiment_logs', best_model_folder)
src = os.path.join(src_path, f'anomaly_score_{machine_type_str}_id_{model_id}_mean.csv')
dst_path = os.path.join('..', 'submission_package', 'task2', 'Primus_CP-JKU_task2_1')
dst = os.path.join(dst_path, f'anomaly_score_{machine_type_str}_id_{model_id}.csv')
copyfile(src, dst)
```
%% Cell type:code id: tags:
``` python
# Create Submission 2
```
%% Cell type:code id: tags:
``` python
from dcase2020_task2.data_sets import INVERSE_CLASS_MAP, EVALUATION_ID_MAP
import os
from shutil import copyfile
for machine_type, (idx, folder_name) in enumerate(best_idxes):
for model_id in EVALUATION_ID_MAP[machine_type]:
machine_type_str = INVERSE_CLASS_MAP[machine_type]
src_path = os.path.join('..', 'experiment_logs', folder_name)
src = os.path.join(src_path, f'anomaly_score_{machine_type_str}_id_{model_id}_mean.csv')
dst_path = os.path.join('..', 'submission_package', 'task2', 'Primus_CP-JKU_task2_2')
dst = os.path.join(dst_path, f'anomaly_score_{machine_type_str}_id_{model_id}.csv')
copyfile(src, dst)
```
%% Cell type:code id: tags:
``` python
best_idxes
```
%%%% Output: execute_result
[(9, 'resnet_gridsearch_normal_loose_1e-4_100_BCE'),
(6, 'resnet_gridsearch_a_bit_larger_loose_1e-4_100_BCE'),
(6, 'resnet_gridsearch_a_bit_larger_loose_1e-4_100_BCE'),
(5, 'resnet_gridsearch_a_bit_smaller_loose_1e-4_100_BCE'),
(8, 'resnet_gridsearch_normal_loose_1e-5_100_AUC'),
(1, 'resnet_gridsearch_a_bit_smaller_loose_1e-4_100_AUC')]
%% Cell type:code id: tags:
``` python
```
id_05_00000000.wav,1.159636378288269
id_05_00000001.wav,-1.2407701015472412
id_05_00000002.wav,-1.1210505962371826
id_05_00000003.wav,-0.8908650279045105
id_05_00000004.wav,-1.1900625228881836
id_05_00000005.wav,1.0319797992706299
id_05_00000006.wav,1.056454062461853
id_05_00000007.wav,-1.1672440767288208
id_05_00000008.wav,1.1435139179229736
id_05_00000009.wav,-1.160632610321045
id_05_00000010.wav,-1.2108410596847534
id_05_00000011.wav,-1.050011157989502
id_05_00000012.wav,-1.25224769115448
id_05_00000013.wav,-1.2099082469940186
id_05_00000014.wav,-1.1249843835830688
id_05_00000015.wav,-1.2214164733886719
id_05_00000016.wav,-1.239822268486023
id_05_00000017.wav,-1.2109419107437134
id_05_00000018.wav,-1.2305641174316406
id_05_00000019.wav,-1.2277612686157227
id_05_00000020.wav,-1.1543638706207275
id_05_00000021.wav,-1.1910011768341064
id_05_00000022.wav,0.888242244720459
id_05_00000023.wav,1.1055760383605957
id_05_00000024.wav,-1.2121919393539429
id_05_00000025.wav,-1.182917594909668
id_05_00000026.wav,0.09009283035993576
id_05_00000027.wav,-1.275421380996704
id_05_00000028.wav,-1.2039765119552612
id_05_00000029.wav,-0.980993390083313
id_05_00000030.wav,-1.2680937051773071
id_05_00000031.wav,-1.043720006942749
id_05_00000032.wav,-1.2593209743499756
id_05_00000033.wav,-1.1478462219238281
id_05_00000034.wav,-1.222351312637329
id_05_00000035.wav,1.0958845615386963
id_05_00000036.wav,-0.8404077887535095
id_05_00000037.wav,1.1585044860839844
id_05_00000038.wav,-1.1720194816589355
id_05_00000039.wav,-1.2184877395629883
id_05_00000040.wav,-1.0577610731124878
id_05_00000041.wav,0.9365418553352356
id_05_00000042.wav,-1.268632411956787
id_05_00000043.wav,-1.233962059020996
id_05_00000044.wav,-1.227808952331543
id_05_00000045.wav,-1.2370445728302002
id_05_00000046.wav,-1.1594661474227905
id_05_00000047.wav,0.8705337047576904
id_05_00000048.wav,0.8635414242744446
id_05_00000049.wav,0.9500057101249695
id_05_00000050.wav,1.070763111114502
id_05_00000051.wav,-1.2083827257156372
id_05_00000052.wav,1.1468582153320312
id_05_00000053.wav,-1.246140956878662
id_05_00000054.wav,-0.9433087110519409
id_05_00000055.wav,0.3632323145866394
id_05_00000056.wav,-1.065921425819397
id_05_00000057.wav,-0.5670916438102722
id_05_00000058.wav,-1.2104285955429077
id_05_00000059.wav,-1.1638364791870117
id_05_00000060.wav,-1.206222414970398
id_05_00000061.wav,-0.8644828200340271
id_05_00000062.wav,-1.0636037588119507
id_05_00000063.wav,1.0985734462738037
id_05_00000064.wav,-0.648371696472168
id_05_00000065.wav,-1.1295454502105713
id_05_00000066.wav,-1.2215864658355713
id_05_00000067.wav,-1.1466268301010132
id_05_00000068.wav,-1.25130295753479
id_05_00000069.wav,-1.2305033206939697
id_05_00000070.wav,1.0186668634414673
id_05_00000071.wav,-1.0661638975143433
id_05_00000072.wav,-1.22564697265625
id_05_00000073.wav,0.9714054465293884
id_05_00000074.wav,-1.2294590473175049
id_05_00000075.wav,-0.43491968512535095
id_05_00000076.wav,1.1502400636672974
id_05_00000077.wav,-1.2397563457489014
id_05_00000078.wav,-1.235073208808899
id_05_00000079.wav,1.0976958274841309
id_05_00000080.wav,1.1597836017608643
id_05_00000081.wav,-1.2477879524230957
id_05_00000082.wav,-1.2255922555923462
id_05_00000083.wav,-1.2101378440856934
id_05_00000084.wav,-1.1309940814971924
id_05_00000085.wav,-1.2282451391220093
id_05_00000086.wav,-1.2406206130981445
id_05_00000087.wav,-1.1565232276916504
id_05_00000088.wav,-1.2564780712127686
id_05_00000089.wav,-1.2347800731658936
id_05_00000090.wav,-1.1786017417907715
id_05_00000091.wav,-0.42040348052978516
id_05_00000092.wav,-1.1314257383346558
id_05_00000093.wav,-1.1787348985671997
id_05_00000094.wav,-1.2658591270446777
id_05_00000095.wav,-0.9754377007484436
id_05_00000096.wav,-1.049874186515808
id_05_00000097.wav,-1.2121727466583252
id_05_00000098.wav,-1.2574958801269531
id_05_00000099.wav,-1.1857436895370483
id_05_00000100.wav,-0.19728983938694
id_05_00000101.wav,-1.1885380744934082
id_05_00000102.wav,-1.2279446125030518
id_05_00000103.wav,-1.1840944290161133
id_05_00000104.wav,0.09995218366384506
id_05_00000105.wav,-1.2462102174758911
id_05_00000106.wav,-1.1955479383468628
id_05_00000107.wav,-0.8841478228569031
id_05_00000108.wav,-1.0625113248825073
id_05_00000109.wav,-1.0394824743270874
id_05_00000110.wav,-1.1346131563186646
id_05_00000111.wav,-0.8835411667823792
id_05_00000112.wav,-1.2443405389785767
id_05_00000113.wav,-1.2124322652816772
id_05_00000114.wav,0.31015151739120483
id_05_00000115.wav,1.0616225004196167
id_05_00000116.wav,-1.1785944700241089
id_05_00000117.wav,-0.6111670732498169
id_05_00000118.wav,-1.122901201248169
id_05_00000119.wav,-1.207695484161377
id_05_00000120.wav,-1.0423927307128906
id_05_00000121.wav,-1.2671973705291748
id_05_00000122.wav,-1.2332663536071777
id_05_00000123.wav,-0.913560152053833
id_05_00000124.wav,-1.0405726432800293
id_05_00000125.wav,-0.9515381455421448
id_05_00000126.wav,-1.2290116548538208
id_05_00000127.wav,-1.1754536628723145
id_05_00000128.wav,-0.7525326013565063
id_05_00000129.wav,-1.1896690130233765
id_05_00000130.wav,-1.0662304162979126
id_05_00000131.wav,-1.2235279083251953
id_05_00000132.wav,-1.1635792255401611
id_05_00000133.wav,1.1466647386550903
id_05_00000134.wav,-0.7503089308738708
id_05_00000135.wav,-1.2302321195602417
id_05_00000136.wav,-0.7357706427574158
id_05_00000137.wav,-0.9787112474441528
id_05_00000138.wav,-1.1937891244888306
id_05_00000139.wav,-1.1362969875335693
id_05_00000140.wav,-1.1522079706192017
id_05_00000141.wav,-1.205244541168213
id_05_00000142.wav,-1.1984944343566895
id_05_00000143.wav,-1.1677836179733276
id_05_00000144.wav,-1.2107322216033936
id_05_00000145.wav,-0.9617741703987122
id_05_00000146.wav,0.8527292013168335
id_05_00000147.wav,-1.116315245628357
id_05_00000148.wav,1.0888038873672485
id_05_00000149.wav,-1.157569169998169
id_05_00000150.wav,-0.8261023759841919
id_05_00000151.wav,-1.2653241157531738
id_05_00000152.wav,-1.1041282415390015
id_05_00000153.wav,-0.8170421719551086
id_05_00000154.wav,-1.1926558017730713
id_05_00000155.wav,-1.2309812307357788
id_05_00000156.wav,-1.1060664653778076
id_05_00000157.wav,-1.1536662578582764
id_05_00000158.wav,1.0901161432266235
id_05_00000159.wav,-1.104515552520752
id_05_00000160.wav,-0.7194859981536865
id_05_00000161.wav,-0.9604554176330566
id_05_00000162.wav,-1.0400559902191162
id_05_00000163.wav,-1.053094744682312
id_05_00000164.wav,-1.2015818357467651
id_05_00000165.wav,1.0492438077926636
id_05_00000166.wav,-1.2085556983947754
id_05_00000167.wav,1.1372965574264526
id_05_00000168.wav,-0.45073485374450684
id_05_00000169.wav,-1.0218942165374756
id_05_00000170.wav,-1.2383832931518555
id_05_00000171.wav,-1.1840095520019531
id_05_00000172.wav,-1.148444414138794
id_05_00000173.wav,-1.1170979738235474
id_05_00000174.wav,-1.2091929912567139
id_05_00000175.wav,-0.5851424336433411
id_05_00000176.wav,-1.2489354610443115
id_05_00000177.wav,-1.1841014623641968
id_05_00000178.wav,-0.9819787740707397
id_05_00000179.wav,-1.2482187747955322
id_05_00000180.wav,-1.2253708839416504
id_05_00000181.wav,-1.2224934101104736
id_05_00000182.wav,-1.20364511013031
id_05_00000183.wav,-0.9937065839767456
id_05_00000184.wav,-1.258599042892456
id_05_00000185.wav,-1.1833462715148926
id_05_00000186.wav,-1.248284935951233
id_05_00000187.wav,-0.2714921236038208
id_05_00000188.wav,-1.237008810043335
id_05_00000189.wav,-1.148253321647644
id_05_00000190.wav,-1.1027647256851196
id_05_00000191.wav,-1.197892665863037
id_05_00000192.wav,-1.1795521974563599
id_05_00000193.wav,-1.1811293363571167
id_05_00000194.wav,-1.216019630432129
id_05_00000195.wav,-1.2609282732009888
id_05_00000196.wav,-1.2544859647750854
id_05_00000197.wav,-1.2152698040008545
id_05_00000198.wav,-1.093477487564087
id_05_00000199.wav,-1.1808228492736816
id_05_00000200.wav,-1.1286615133285522
id_05_00000201.wav,-1.2790188789367676
id_05_00000202.wav,-1.169005036354065
id_05_00000203.wav,-1.1427022218704224
id_05_00000204.wav,-1.2118510007858276
id_05_00000205.wav,-1.1976617574691772
id_05_00000206.wav,1.019133448600769
id_05_00000207.wav,-1.0298771858215332
id_05_00000208.wav,-1.2072105407714844
id_05_00000209.wav,-1.2390727996826172
id_05_00000210.wav,1.1137001514434814
id_05_00000211.wav,-1.1894394159317017
id_05_00000212.wav,-1.17580246925354
id_05_00000213.wav,-1.0919675827026367
id_05_00000214.wav,-1.2155402898788452
id_05_00000215.wav,0.1286957710981369
id_05_00000216.wav,-0.7021915316581726
id_05_00000217.wav,-1.2063838243484497
id_05_00000218.wav,-1.2132076025009155
id_05_00000219.wav,-1.1584149599075317
id_05_00000220.wav,-1.1930537223815918
id_05_00000221.wav,-1.2273240089416504
id_05_00000222.wav,1.0534676313400269
id_05_00000223.wav,-0.9994610548019409
id_05_00000224.wav,-1.211593747138977
id_05_00000225.wav,-1.0984666347503662
id_05_00000226.wav,-0.9066381454467773
id_05_00000227.wav,-1.219839096069336
id_05_00000228.wav,-1.261009931564331
id_05_00000229.wav,-1.2286522388458252
id_05_00000230.wav,-1.22162663936615
id_05_00000231.wav,-1.1771364212036133
id_05_00000232.wav,-1.222149133682251
id_05_00000233.wav,-0.9608073830604553
id_05_00000234.wav,-1.189088225364685
id_05_00000235.wav,0.35507646203041077
id_05_00000236.wav,0.8864405155181885
id_05_00000237.wav,-1.2427380084991455
id_05_00000238.wav,-0.3418616056442261
id_05_00000239.wav,0.8037362098693848
id_05_00000240.wav,-1.2249150276184082
id_05_00000241.wav,0.8836631178855896
id_05_00000242.wav,-1.2119016647338867
id_05_00000243.wav,-1.20646071434021
id_05_00000244.wav,-0.9384149312973022
id_05_00000245.wav,-1.1765832901000977
id_05_00000246.wav,-0.9081857204437256
id_05_00000247.wav,-1.2715578079223633
id_05_00000248.wav,-1.1435810327529907
id_05_00000249.wav,-1.0473341941833496
id_05_00000250.wav,-1.1578387022018433
id_05_00000251.wav,-1.2771391868591309
id_05_00000252.wav,-1.1271827220916748
id_05_00000253.wav,-1.263262152671814
id_05_00000254.wav,-1.0589655637741089
id_05_00000255.wav,-1.1994044780731201
id_05_00000256.wav,-1.1624776124954224
id_05_00000257.wav,-1.123888611793518
id_05_00000258.wav,-1.153948426246643
id_05_00000259.wav,0.08680899441242218
id_05_00000260.wav,-1.1769676208496094
id_05_00000261.wav,-1.2233970165252686
id_05_00000262.wav,0.5813376903533936
id_05_00000263.wav,-0.619607150554657
id_05_00000264.wav,-1.0759248733520508
id_05_00000265.wav,-1.1776036024093628
id_05_00000266.wav,-1.016483187675476
id_05_00000267.wav,-1.1526234149932861
id_05_00000268.wav,-1.1856727600097656
id_05_00000269.wav,-1.259604573249817
id_05_00000270.wav,-1.1248265504837036
id_05_00000271.wav,0.4291975796222687
id_05_00000272.wav,-0.19641925394535065
id_05_00000273.wav,-1.221187710762024
id_05_00000274.wav,-1.2493281364440918
id_05_00000275.wav,0.45188257098197937
id_05_00000276.wav,-1.2471612691879272
id_05_00000277.wav,-0.8808885812759399
id_05_00000278.wav,-1.0818778276443481
id_05_00000279.wav,-1.0733596086502075
id_05_00000280.wav,1.1035537719726562
id_05_00000281.wav,-1.125366449356079
id_05_00000282.wav,-1.0980110168457031
id_05_00000283.wav,-1.2396498918533325
id_05_00000284.wav,-1.1861947774887085
id_05_00000285.wav,1.0097345113754272
id_05_00000286.wav,-1.229791522026062
id_05_00000287.wav,-1.2371488809585571
id_05_00000288.wav,-1.1638261079788208
id_05_00000289.wav,-1.1481378078460693
id_05_00000290.wav,-1.2172138690948486
id_05_00000291.wav,-1.2093760967254639
id_05_00000292.wav,-0.8839846253395081
id_05_00000293.wav,0.9104718565940857
id_05_00000294.wav,-1.1159203052520752
id_05_00000295.wav,1.1451692581176758
id_05_00000296.wav,-0.8302136659622192
id_05_00000297.wav,-1.1362733840942383
id_05_00000298.wav,-1.260132074356079
id_05_00000299.wav,-1.2448339462280273
id_05_00000300.wav,-0.9447330832481384
id_05_00000301.wav,-1.1684141159057617
id_05_00000302.wav,-1.2681635618209839
id_05_00000303.wav,-1.1546210050582886
id_05_00000304.wav,-1.2695982456207275
id_05_00000305.wav,-1.151923656463623
id_05_00000306.wav,1.0296417474746704
id_05_00000307.wav,1.1023705005645752
id_05_00000308.wav,-1.1417409181594849
id_05_00000309.wav,-1.1159604787826538
id_05_00000310.wav,-1.0832643508911133
id_05_00000311.wav,-1.2033952474594116
id_05_00000312.wav,-1.2433807849884033
id_05_00000313.wav,-1.1936315298080444
id_05_00000314.wav,-1.0628693103790283
id_05_00000315.wav,-1.1926774978637695
id_05_00000316.wav,-1.0699231624603271
id_05_00000317.wav,-0.607727587223053
id_05_00000318.wav,-1.1386457681655884
id_05_00000319.wav,-1.2400237321853638
id_05_00000320.wav,1.0756264925003052
id_05_00000321.wav,1.0143851041793823
id_05_00000322.wav,-0.5651108026504517
id_05_00000323.wav,-1.1508867740631104
id_05_00000324.wav,-1.155853271484375
id_05_00000325.wav,1.0440536737442017
id_05_00000326.wav,1.0789283514022827
id_05_00000327.wav,1.0910183191299438
id_05_00000328.wav,-1.2395488023757935
id_05_00000329.wav,-1.185746431350708
id_05_00000330.wav,-1.0299088954925537
id_05_00000331.wav,0.3772934377193451
id_05_00000332.wav,-1.261343002319336
id_05_00000333.wav,-1.2560003995895386
id_05_00000334.wav,0.9200734496116638
id_05_00000335.wav,1.129012942314148
id_05_00000336.wav,-1.250592827796936
id_05_00000337.wav,-1.240684986114502
id_05_00000338.wav,-1.1961225271224976
id_05_00000339.wav,-1.1954200267791748
id_05_00000340.wav,-0.36225375533103943
id_05_00000341.wav,-1.1695839166641235
id_05_00000342.wav,-0.8196749091148376
id_05_00000343.wav,0.020561225712299347
id_05_00000344.wav,-1.159034013748169
id_05_00000345.wav,-1.229487419128418
id_05_00000346.wav,-1.2131919860839844
id_05_00000347.wav,0.3735255002975464